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Abstract
We analyse the expression for the conductance of a quantum wire which is
described by an integrable quantum field theory. In the high temperature regime
we derive a simple formula for the filling fraction. This expression involves only
the inverse of a matrix which contains the information of the asymptotic phases
of the scattering matrix and the solutions of the constant thermodynamic Bethe
ansatz equations. Evaluating these expressions for minimal affine Toda field
theory we recover several sequences of rational numbers, which are multiples
of the famous Jain sequence for the filling fraction occurring in the context of
the fractional quantum Hall effect. For instance we obtain ν = 4m/(2m + 1)

for A4m−1-minimal affine Toda field theory. The matrices involved have in
general non-rational entries and are not part of previous classification schemes
based on integral lattices.

PACS numbers: 73.43.Cd, 73.21.Hb, 03.70.+k, 02.30.lk

1. Introduction

The quantum [1] and in particular the fractional [2] quantum Hall effect have attracted an
enormous amount of attention both from theorist [3] and experimentalists (for some very
recent experiments see, e.g., [4]). The key observation is that when subjecting an electron
gas confined to two space dimensions to a strong uniform magnetic field, the transverse
(Hall) conductance preferably takes on certain characteristic values G = e2/hν, whereas the
longitudinal conductance vanishes at these plateaux in complete analogy with the classical Hall
effect [5]. The filling fractions ν are distinct universal, in the sense that they are independent of
the geometry or type of the material, rational numbers, which can be determined experimentally
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to an extremely high precision. Many, but not all, of the experimentally observed filling
fractions are part of Jain’s famous sequence (see [6] and references therein)

ν = m

mp ± 1
m,p/2 = 1, 2, 3, . . . (1.1)

which results as a theoretical prediction from a composite Fermion theory.
In the following we will show that remarkably multiples of these universal numbers also

quantize the conductance of quantum wires when described by minimal affine Toda field
theories (ATFT) [7]. However, no claims are made here that the systems studied actually
correspond to any concrete description of the real quantum Hall effect. Nonetheless, one
may speculate as there is a well-defined way to reduce from a Chern–Simons type theory (an
established description of the quantum Hall effect) to ATFT, see e.g. [8].

2. Conductance in the high temperature regime

Let us briefly recall [9] how to compute the conductance G within the framework of the
Landauer–Büttiker transport theory [10] as a function of the temperature T and elaborate on
that expression. Let us consider a one-dimensional quantum wire within the Landauer–Büttiker
transport theory. In order to compute G we simply have to determine the difference of the
static charge distribution at the left and right constriction of the wire, which we assume to be
at the potentials µl

i and µr
i , respectively. Then, to obtain the direct current Ii for each particle

of type i with charge qi , we have to integrate the density distribution functions ρr
i (θ, T , µi) of

occupied states over the full range of the rapidities θ and the total conductance simply reads

G(1/T ) =
∑

i

Gi =
∑

i

lim
�µi→0

1

�µi

Ii

(
1/T ,�µi = µl

i − µr
i

)
(2.1)

=
∑

i

lim
�µi→0

qi

2�µi

∫ ∞

−∞
dθ

[
ρr

i

(
θ, T , µl

i

) − ρr
i

(
θ, T , µr

i

)]
(2.2)

where Gi denotes the contribution to the conductance of each particle i, and the sums above
run both over particles and antiparticles. That explains the factor of 1/2 in (2.2) which
accounts for the double counting. Hence, the main task in this approach is to determine the
density distribution functions ρr

i (θ, T , µi) of occupied states. It is remarkable that in the
context of integrable models, despite the fact that these functions are neither Fermi–Dirac nor
Bose–Einstein, there exist approaches in which they can be computed non-perturbatively, i.e.
the thermodynamic Bethe ansatz (TBA) [11].

We briefly recall how this is possible. The central equations of the TBA relate the total
density of available states ρi(θ, r) for particles of type i with mass mi as a function of the
inverse temperature r = 1/T to the density of occupied states ρr

i (θ, r)

ρi(θ, r) = mi

2π
cosh θ +

∑
j

[
ϕij ∗ ρr

j

]
(θ). (2.3)

By (f ∗ g)(θ) := 1/(2π)
∫

dθ ′f (θ − θ ′)g(θ ′) we denote as usual the convolution of two
functions. There are only two inputs to the entire TBA analysis: first the dynamical interaction,
which enters via the logarithmic derivative of the scattering matrix ϕij (θ) = −id ln Sij (θ)/dθ

and an assumption on the statistical interaction gij amongst the particles i and j on which
we comment further below. For the moment we choose this interaction to be of fermionic
type. The mutual ratio of the two types of densities serves as the definition of the so-called
pseudo-energies εi(θ, r)
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ρr
i (θ, r)

ρi(θ, r)
= e−εi (θ,r)

1 + e−εi (θ,r)
(2.4)

which have to be positive and real. At thermodynamic equilibrium they can be computed from
the nonlinear integral equations,

rmi cosh θ = εi(θ, r, µi) + rµi +
∑

j

[ϕij ∗ ln(1 + e−εj )](θ) (2.5)

where r = m/T,ml → ml/m,µi → µi/m, with m being the mass of the lightest particle in
the model and chemical potential µi < 1. As pointed out already in [11] (here just with the
small modification of a chemical potential), the comparison between (2.5) and (2.3) leads to
the useful relation

ρi(θ, r, µi) = 1

2π

(
dεi(θ, r, µi)

dr
+ µi

)
∼ 1

2πr
ε(θ)

dεi(θ, r, µi)

dθ
. (2.6)

Here ε(θ) = 	(θ)−	(−θ) is the unit step function, i.e. ε(θ) = 1 for θ > 0 and ε(θ) = −1 for
θ < 0. In equation (2.4), we assume that in the large rapidity regime the density ρr

i (θ, r, µi)

is dominated by the last expression in (2.6) and in the small rapidity regime by the Fermi
distribution function. Therefore, from (2.4) follows

ρr
i (θ, r, µi) = e−εi (θ,r,µi)

1 + e−εi (θ,r,µi)
ρi(θ, r, µi) (2.7)

∼ 1

2πr
ε(θ)

d

dθ
ln[1 + exp(−εi(θ, r, µi))]. (2.8)

Using this expression in equation (2.2), we can approximate the direct current in the ultraviolet
by

lim
r→0

Ii(r,�µi) ∼ qi

4πr

∫ ∞

−∞
dθ ln

[
1 + exp

(−εi

(
θ, r, µl

i

))
1 + exp

(−εi

(
θ, r, µr

i

))
]

dε(θ)

dθ
(2.9)

after a partial integration. Taking now the potentials at the end of the wire to be
µr

i = −µl
i = µi/2 we carry out the limit �µi → 0 in (2.2) with the help of l’Hôpital

rule and the conductance becomes

lim
r→0

Gi(r) ∼ qi

2πr

∫ ∞

−∞
dθ

1

1 + exp[εi(θ, r, 0)]

dεi(θ, r, µi/2)

dµi

∣∣∣∣
µi=0

dε(θ)

dθ
. (2.10)

Noting that dε(θ)/dθ = 2δ(θ), we obtain

lim
r→0

Gi(r) ∼ qi

πr

1

1 + exp εi(0, r, 0)

dεi(0, r, µi/2)

dµi

∣∣∣∣
µi=0

. (2.11)

The derivative dεi(0, r, µi/2)/dµi can be obtained by solving

dεi(0, r, µi/2)

dµk

= − r

2
δik +

∑
j

Nij

1

1 + exp εj (0, r, µi/2)]

dεj (0, r, µj/2)

dµk

(2.12)

which results from performing a constant TBA analysis on the µk-derivative of (2.5) in the
spirit of [11]. At this point only the asymptotic phases of the scattering matrix enter via

Nij = 1

2πi
lim

θ→∞
[ln[Sij (−θ)/Sij (θ)]]. (2.13)

In principle we now have all quantities needed to compute the conductance, but solving
(2.12) for the derivatives of the pseudo-energies is somewhat cumbersome, see [9] for such
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a computation. Nonetheless, we can elaborate more on equation (2.12) and simplify the
procedure further. For this purpose we introduce the quantity

Yij := 1

r(1 + eεi )

dεi

dµj

(2.14)

such that we can rewrite equation (2.12) equivalently as

MijYjk = δik

2
with Mij := Nij − (1 + eεi )δij (2.15)

where the pseudo-energies satisfy the constant TBA equations

e−εi =
∏
j

(1 + e−εj )Nij . (2.16)

Returning now to dimensionful variables, i.e. replacing 1/2π → e2/h, the conductance at
high temperature in terms of the filling fraction ν then simply results in

G(0) = e2

h
ν with ν = 2

∑
i,j

qi(M
−1)ij . (2.17)

This means we have reduced the entire problem of computing filling fractions simply to the
task of finding and inverting the matrix M. This is done in two steps. First from the asymptotic
phases of the scattering matrix we compute Nij and subsequently we solve the constant TBA
equations (2.16). Then it is a simple matter of inverting the matrix (2.15) and performing the
sums in (2.17).

In the context of the fractional quantum Hall effect one encounters very often particles
which obey some exotic (anyonic) statistics. So far we have assumed that our particles
obey fermionic type statistics as this choice is most natural for the investigated theories [11].
However, one can easily implement more general statistics by adding a matrix gij to the
N-matrix [12].

The formula (2.17) reminds of course of the well-known expressions for the conductance
as may be found for instance in [13, 14]. In that context it was found [13, 15] that Jain’s
sequence (1.1) can be obtained simply from the (m × m)-matrix

Mij = p ± δij . (2.18)

For this we have to take qi = 1/2 ∀i in our expression (2.17). We will now demonstrate
that a sequence closely related to (1.1) can also be obtained in a more surprising way from
fairly complicated matrices, even with non-rational entries, which result directly in the way
indicated above, namely from a TBA analysis of minimal affine Toda field theories [7]. Each
Toda theory is associated with a Lie algebra g of rank � and it is well known [16] that in that
case N is an (� × �)-matrix which is of the general form

Nij = δij − 2
(
K−1

g

)
ij

(2.19)

where Kg is the Cartan matrix related to g (see, e.g., [17]). The solutions to the constant
TBA equations are also known [16, 18] for most cases. In the ultraviolet limit these theories
possess Virasoro central charge c = 2�/(H + 2), with H being the Coxeter number of the Lie
algebra g.
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3. Fractional filling fractions from minimal affine Toda field theory

3.1. The 4m/(2m + 1)-sequence

Let us start with some concrete examples to illustrate the working of our formulae. Specializing
the general expression (2.19) to the A3-case, the solutions to the constant TBA equations (2.16)
are simply

eε1 = eε3 = 2 eε2 = 3. (3.1)

Then, the inverse of the M-matrix

Mij = δij − 2
(
K−1

A3

)
ij

− δij (1 + eεi ) (3.2)

is computed to be

M−1 = 1

36


11 −2 −1

−2 8 −2
−1 −2 11


 . (3.3)

From the fact that the A�-minimal affine Toda field theories can also be viewed as complex
sine-Gordon models [19], we know [20] that the charges in this theory are q1 = q3 = 1, q2 = 2,
such that ( 2.17) yields

νA3 = 4/3. (3.4)

The next example, i.e. A5-minimal affine Toda field theory, yields a less expected answer,
even more since the M-matrix contains non-rational entries. With (2.19) for A5 the solutions
to the constant TBA equations are [16, 18]

eε1 = eε5 = 1 +
√

2 eε2 = eε4 = 2 + 2
√

2 eε3 = 3 + 2
√

2. (3.5)

Assembling this into the M-matrix, it is clear that it will contain non-rational entries. Evidently,
this matrix is not of the form (2.18) and certainly falls out of the classification scheme based
on integral lattices [21]. Nonetheless, it will lead to a distinct rational value for ν. We compute
the inverse of M to be

M−1 =




(
35
4 − 6

√
2
) (

31
2
√

2
− 11

) (
7−5

√
2

4

) (
6 − 17

2
√

2

) (
3
√

2 − 17
4

)
(

31
2
√

2
− 11

) (
15 − 21√

2

) (
7
√

2−10
4

) (
6
√

2 − 17
2

) (
6 − 17

2
√

2

)
(

7−5
√

2
4

) (
7
√

2−10
4

) (
9
4 − 3√

2

) (
7
√

2−10
4

) (
7−5

√
2

4

)
(

6 − 17
2
√

2

) (
6
√

2 − 17
2

) (
7
√

2−10
4

) (
15 − 21√

2

) (
31

2
√

2
− 11

)
(

3
√

2 − 17
4

) (
6 − 17

2
√

2

) (
7−5

√
2

4

) (
31

2
√

2
− 11

) (
35
4 − 6

√
2
)




. (3.6)

Remarkably when taking into account that [20] q1 = q5 = 1, q2 = q4 = 2, q3 = 3, we obtain
by evaluating (2.17) for the matrix (3.6) the simple ratio

νA5 = 3/2. (3.7)

We will now turn to the generic case. Taking the general solutions of the constant TBA
equations into account [16, 18] and using a generic expression for the inverse of the Cartan
matrix K−1

A�
= min(i, j)− ij/(� + 1) in (2.19), the M-matrix for an A2�+1-minimal affine Toda

field theory can be written generically as

Mij = ij

� + 1
− 2 min(i, j) − δij

sin
(

iπ
2�+4

)
sin

(
(i+2)π

2�+4

)
sin2

(
π

2�+4

) . (3.8)
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As already indicated by the previous example this matrix is not of the form (2.18) and does
not fit into the classification scheme proposed in [21]. According to [20] we have the charges

qi = q2�+2−i and qi = i for i � � + 1. (3.9)

As can be guessed from (3.6), it is not evident how to express the inverse in terms of a simple
closed expression. We can, however, invert (3.8) case-by-case up to very high rank and we
obtain from (2.17) together with (3.9) the sequence

νA2�+1 = 2� + 2

� + 2
. (3.10)

In view of (3.8), it is remarkable that the outcome is rational. Note for � = 0, that is A1 we
recover the free case with ν = 1. Now, taking � = 2m − 1, we obtain, as a subsequence of
this, four times the most stable part of Jain’s sequence (1.1) with p = 2:

νA4m−1 = 4m

2m + 1
. (3.11)

In summary, the conductance of a quantum wire which is described by a massive A2�+1-
minimal affine Toda field theory possesses in the high temperature regime, in which the model
turns into a conformal field theory with Virasoro central c = (2� + 1)/(� + 2), a filling fraction
equal to (3.10). In particular for � = 2m − 1, we obtain the sequence (3.11).

3.2. The 2m/(2m + 1)-sequence

We proceed now similarly as in the preceding section, but now for the D2�+1-minimal affine
Toda field theories, which all possess Virasoro central charge c = 1 in the ultraviolet limit.
We label the particles in consecutive order along the Dynkin diagram (see, e.g., [17] for more
properties), starting from the not splitted end. Taking in (2.19) g = D2�+1 the solutions to the
constant TBA equations are simply [16, 18]

eεi = i(i + 2) 1 � i � 2� − 1 (3.12)

eε2�+1 = eε2� = 2�. (3.13)

Since these entries are all integer valued, we are not very surprised when we obtain rational
values for the filling fraction, but what is not obvious is that the outcome is one of Jain’s
sequences. The M-matrix is computed to be

Mij = −2
(
K−1

D2�+1

)
ij

− δij eεi (3.14)

with the values (3.12) and (3.13). From these data we evaluate a simple expression for the
determinant

det M = (2� + 1)2(2� + 1)!(2�)!

2
(3.15)

and the inverse of this matrix

(M−1)ij = (M−1)ji = 2

3j (1 + j)(2 + j)
2 � i < j � 2� − 1 (3.16)

(M−1)ii = −(3i + 1)

3i(1 + i)(2 + i)
1 � i � 2� − 1 (3.17)

(M−1)i(2�+1) = (M−1)i(2�) = 1

6�(2� + 1)
1 � i � 2� − 1 (3.18)

(M−1)(2�+1)i = (M−1)(2�)i = 1

6�(2� + 1)
1 � i � 2� − 1 (3.19)
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(M−1)(2�+1)(2�+1) = (M−1)(2�)(2�) = − 10� + 1

12�(2� + 1)
(3.20)

(M−1)(2�+1)(2�) = (M−1)(2�)(2�+1) = 2� − 1

12�(2� + 1)
. (3.21)

Taking then the charges of the particles to be

q2�+1 = q2� = �/2 and qi = i for i � 2� − 1 (3.22)

the computation of (2.17) yields

νD2�+1 = 2�

2� + 1
. (3.23)

Similarly as in the previous subsection, the sequence (3.23) gives twice the Jain sequence (1.1)
with p = 2.

In summary, the conductance of a quantum wire which is described by a massive D2�+1-
minimal affine Toda field theory possesses in the high temperature regime, in which all models
turn into conformal field theories with Virasoro central charge c = 1, a filling fraction equal
to (3.23) which is twice the principal Jain sequence (1.1).

3.3. The 4m/(6m + 1)-sequence

This sequence can be obtained similarly just by altering the values of the two charges at
the very end of the Dynkin diagram. Considering now the D6m+2-minimal affine Toda field
theories we can employ the same M-matrix as in the previous subsection, but we take the
charges of the particles to be

q6m+2 = q6m+1 = m/(2m + 1) and qi = i for i � 6m. (3.24)

Evaluating then the expression for the filling fractions (2.17) gives

νD6m+2 = 4m

6m + 1
(3.25)

which is four times the Jain’s sequence (1.1) with p = 6.

4. Conclusions

Within a Landauer–Büttiker transport theory picture we have analysed the expression for the
conductance of a quantum wire which is described by an integrable quantum field theory. The
final expression for the conductance in the high temperature regime is very simple (2.17) and
involves the sum over the entries of the inverse of a certain matrix M as defined in (2.15). This
matrix is constructed from the knowledge of the asymptotic phases of the scattering matrix
and the solutions of the constant TBA equations ( 2.16).

When evaluating this matrix for some concrete minimal affine Toda field theories, we
obtain values for the filling fraction which coincide with multiples of several subsequences of
Jain’s series (1.1) and are therefore rational numbers. The fact that we obtain these special
rational values is extremely surprising, in particular as for the A2�+1-minimal affine Toda
theories the related M-matrix has non-rational entries. One should note, however, that one
does not always get these nice rational values. We did not report all examples here which we
have computed, but for instance in general the A2�- and the D2�-minimal affine Toda theories
lead to non-rational values for ν.

Our findings pose several interesting questions. As it is clear that the M-matrices obtained
are beyond the classification scheme carried out in [21] on the basis of integral lattices,
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one may attempt a new type of classification based on the Lie algebraic systematics which
underlies the formulation of integrable quantum field theories. In order to do this we have
to enlarge our considerations [22] to other algebras such as the E-series, non-simply laced
Lie algebras and also to theories which are related to a pair of Lie algebras. It would
also be interesting to perform an analysis based on a different expression from (2.2) for
the conductance, such as the Kubo formula, and compare the findings in a similar manner
as in [9].
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